Suficiencia
Si del parámetro emplea efectivamente la información de una m.a. de tamaño decimos que es un estimador suficiente, tal que cumple.
Ejemplos
Sea La media muestral verificar que es un estimador suficiente.
Sea una v.a. poblacional con distribución normal con media (Desconocida) y (Conocida). Sol. $$ \begin{align} x \to N(\mu_{x},\sigma_{o}^{2}) \quad E(\bar{X})=\mu_{x} \quad \text{Insesgado} \ f(x;\theta=\mu_{x})=\frac{1}{\sqrt{ 2 \pi }\sigma_{o}}e^{- \frac{1}{2}\left( \frac{x-\mu_{x}}{\sigma_{o}} \right)^{2}}\quad-\infty<x<\infty \ \text{m.a: }X_{1},X_{2},\dots,X_{n} \ f(x_{1},x_{2},\dots,x_{n};\mu_{x})=\prod_{i=1}^{n}{f(x_{i};\mu_{x})}=\prod_{i=1}^{n}{\frac{1}{\sqrt{ 2 \pi }\sigma_{o}}e^{- \frac{1}{2}\left( \frac{x_{i}-\mu_{x}}{\sigma_{o}} \right)^{2}}} \ =\frac{1}{(\sqrt{ 2 \pi }\sigma_{o})^{2}}e^{- \frac{1}{2} \sum_{i=1}^{n}{ \left( \frac{x_{i}-\mu_{x}}{\sigma_{o}} \right)^{2}}} \ \text{primero} \sum_{i=i}^{n}{(X_{i}-\mu_{x})^{2}}=\sum_{i=1}^{n}{[(x_{i}-\bar{x})-(\mu_{x}-\bar{x})]^{2}}=\sum_{i=1}^{n}{[(x_{i}-\bar{x})^{2}-2(\mu_{x}-\bar{x})(x_{i}-\bar{x})+(\mu_{x}-\bar{x})^{2}]} \ =\sum_{i=1}^{n} (x_{i}-\bar{x})^{2}-2(\mu_{x}-\bar{x})\sum_{i=1}^{n}(x_{i}-\bar{x})+n(\mu_{x}-\bar{x})^{2}=\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}+n(\mu_{x}-\bar{x})^{2} \ \text{aplicando en la original} \ =ke^{-1/2 \left[ n(\mu_{x}-\bar{x})^{2}+\sum_{i=1}^{n}(X_{i}-\bar{x})^{2} \right]}=ke^{-\frac{n}{2\sigma_{o}^{2}}(\mu_{x}-\bar{x})^{2}}e^{-\frac{1}{2\sigma_{o}^{2}}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2} } \ \text{Que es de la forma } ke^{g(\bar{x};\mu_{x})}e^{h(x_{1},x_{2},\dots,x_{n})} \end{align}